The isolation of 4'-methyl-N-methylcoclaurine is the first report of its occurring as a natural product, though it is synthetically known as a product from cleavage of neferine by sodium in liquid NH_3 (4).

This is the first time that co-occurrence of bis-coclaurine-type alkaloids (isoliensinine and neferine) and coclaurine-type alkaloids $[(\pm)$ -armepavine and 4'-methyl-N-methylcoclaurine] in the embryo loti is reported.

EXPERIMENTAL

EXTRACTION AND ISOLATION.—Dried and powdered embryo loti (168 g) was extracted seven times with hot MeOH. The MeOH extract was concentrated in vacuo to a syrup, mixed with 3% tartaric acid solution and filtered. The filtrate was made alkaline with NH₄OH solution and extracted with Et₂O. The Et₂O solution was treated with 3% NaOH solution. The aqueous solution was adjusted to pH 10 with NH₄Cl and then extracted with Et₂O. The Et₂O extract dissolved in CHCl₃ was treated successively with pH 5.5 and 5.0 McIlvaine buffer solutions. Chromatography of the crude alkaloids from the pH 5.5 McIlvaine buffer solution on a silica gel column eluting with a CHCl₃/MeOH gradient afforded isoliensinine (21 mg) and (±)-armepavine (16 mg). Chromatography of the crude alkaloids from the pH 5.0 McIlvaine buffer solution on a silica gel column eluting with a CHCl₃/MeOH gradient afforded neferine (37 mg) and 4'-methyl-N-methylcoclaurine (13 mg).

All four compounds were identified by comparison of their physical and spectral properties with those reported in the literature (3-5).

TEST FOR ANTIHYPERTENSIVE ACTIVITY.—Spontaneously hypertensive rats were anesthetized with pentobarbital Na, 50 mg/kg, ip and urethane, 1.75 g/kg, sc. Each sample (10 mg/kg) was administered intravenously to those rats through the femoral vein and tested for its antihypertensive activity. Blood pressure was directly measured by carotid artery cannuration.

Full details of the isolation, identification, and antihypertensive activity of the compounds are available on request to the senior author.

ACKNOWLEDGMENTS

We are indebted to Meiji Natural Foods Co. Ltd. for supplying material of the embryo loti.

LITERATURE CITED

- Chiang Su New Medical College, "Dictionary of Chinese Crude Drugs," "Zhong-yao-da-ci-dian," Shanghai Scientific Technologic Publisher, Shanghai, 1977, p. 1806.
- 2. T.Y. Chao, Y.L. Chou, P.T. Young, and T.Q. Chou, Scientia Sinica, 11, 215 (1962).
- 3. M. Tomita, H. Furukawa, T.H. Yang, and T.J. Lin, Chem. Pharm. Bull., 13, 39 (1965).
- 4. H. Furukawa, Yakugaku Zasshi, 85, 335 (1965).
- 5. M. Tomita, Y. Watanabe, and H. Furukawa, Yakugaku Zasshi, 81, 1644 (1961).

Received 26 August 1985

METABOLITES FROM THE FERMENTATION OF ULOCLADIUM BOTRYTIS

S. GIRISHAM, S.M. REDDY,

Department of Botany

G.V. RAO, and P.S. RAO

Department of Chemistry, Katatiya University, Warangal 506 009, India

Fungal metabolites have gained attention recently in view of their chemical diversity. There are no reports on the chemical constituents of *Ulocladium botrytis* Preuss, a seed-borne fungus of pearl millet (*Pennisetum typhoides*) and hence the present investigation.

EXPERIMENTAL

Monosporic cultures of *U. botrytis* in modified Czapeks medium (1) were incubated at 27-29° for 15 days. The whole cultures were extracted in a liquid-liquid extractor using CHCl₃. Silica gel column chromatography of the extract using petroleum ether and C_6H_6 yielded dodecane (ir, ¹H nmr, ms) (2) and 9, 10, 12, 13-tetrahydroxyheneicosanoic acid (ir, ¹H nmr, ms) (3, 4). The latter compound was earlier reported from the fungus *Haematomma ventosum* (4).

The details of isolation and identification of the compounds are available on request.

May-Jun 1986]

Brief Reports

LITERATURE CITED

- 1. G. Smith, "An Introduction to Industrial Mycology," Edward Arnold Limited, London, 1960.
- 2. S. Hamilton and R.J. Hamilton, in: "Topics in Lipid Chemistry." Ed. by F.D. Gunstone, Logos Press, 1972.
- 3. Y.J. Solberg, Acta Chem. Scand., 14, 2152 (1960).
- 4. W.B. Turner and D.C. Aldridge, "Fungal metabolites II," Academic Press, London, 1983.

Received 28 August 1985

MARINE NATURAL PRODUCTS: 3-FORMYLINDOLE FROM THE RED ALGAE BOTRYOCLADIA LEPTOPODA

Shaheen Bano, Nasreen Bano, Viqar Uddin Ahmad,

H.E.J. Research Institute of Chemistry,

MUSTAFA SHAMEEL,

Department of Botany, University of Karachi

and Shahid Amjad

National Institute of Oceanography, Karachi-32, Pakistan

3-Formylindole has been isolated from the red alga Botryocladia leptopoda. (J.Ag) Kylin.

EXPERIMENTAL

B. leptopoda was collected in April 1985, around Patcha near Karachi, and a voucher specimen has been deposited in the Department of Botany, University of Karachi.

After soaking 1.5 kg (wet weight) of the alga in MeOH for 1 week and evaporation under reduced pressure yielded 5.8 g of crude extract which was partitioned between EtOAc and H_2O . The EtOAc extract thus obtained was subjected to column chromatography. The fraction eluted with hexane-Et₂O (75:25) yielded a crystalline compound (8 mg). Further recrystallization was carried out with MeOH. This compound, mp 180°, was identified as 3-formylindole on the basis of comparison of its mass, ¹H-nmr (1) and ¹³C-nmr spectra with literature values (2).

ACKNOWLEDGMENTS

We wish to thank Dr. G.S. Qureshi, Director, National Institute of Oceanography, Karachi, for his cooperation in the collection of material.

LITERATURE CITED

- 1. B.K. Chowdhury and D.P. Chakraborty, Phytochemistry, 10, 481 (1971).
- M. Shamma and D.M. Hindenlang, "Carbon 13-NMR Shift Assignments of Amines and Alkaloids," Plenum Press, New York, 1979, p. 197.

Received 16 September 1985

CHEMICAL CONSTITUENTS OF THE BARK OF TERMINALIA ALATA¹

GOPAL R. MALLAVARAPU,* S. BABU RAO, and K.V. SYAMASUNDAR

Central Institute of Medicinal and Aromatic Plants, Regional Centre, Bangalore 560 037, India

In continuation of our chemical studies on *Terminalia alata* Heyne ex Roth (Combretaceae) (1,2), we report here the isolation of betulic acid (3), arjunic acid (4), arjunolic acid (1,2), arjunetin (5), and ellagic acid (6) from the trunk bark. This is the first report of the isolation of betulinic acid from the genus *Terminalia*. It is also obtained from the heartwood.

¹CIMAP Communication No. 587.